Gut Microorganisms and Autism: the Latest Research

LPS and Autism

LPS and Mercury

Treatments for LPS

LPS and Behavior

LPS and Detox

LPS and the Brain LPS and Thyroid LPS and GI System LPS and Immunity Other Effects of LPS
LPS and Inflammation LPS and Opioids LPS and Oxidative Stress LPS and Leaky Gut LPS and Candida
Anorexia and LPS NF-κB and LPS Mitochondria and LPS Liver and LPS Ammonia and LPS
Hypoglycemia and LPS Kidney and LPS Allergy and Bacteria Copper, Zinc and LPS Glutathione and LPS

Click here to view this article on PubMed

Mitochondrial DNA (mtDNA) damage 1: Am J Respir Crit Care Med. 2003 Feb 15;167(4):570-9. Epub 2002 Dec 12.

Postlipopolysaccharide oxidative damage of mitochondrial DNA.

Suliman HB, Carraway MS, Piantadosi CA.

Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.

Selected structural and functional alterations of mitochondria induced by bacterial lipopolysaccharide (LPS) were investigated on the basis of the hypothesis that LPS initiates hepatic mitochondrial DNA (mtDNA) damage by oxidative mechanisms. After a single intraperitoneal injection of Escherichia coli LPS, liver mtDNA copy number decreased, as determined by Southern analysis, within 24 hours relative to nuclear 18S rRNA (p < 0.05). LPS induced a novel oxidant-dependent 3.8-kb mtDNA deletion in the region encoding NADH dehydrogenase subunits 1 and 2 and cytochrome c oxidase subunit I, which correlated with mitochondrial glutathione depletion. Expression of mitochondrial mRNA and transcription of mitochondrial RNA were suppressed, whereas mRNA expression increased for selected nuclear-encoded mitochondrial proteins. Resolution of mtDNA damage was mediated by importation of mitochondrial transcription factor A protein, a central regulator of mtDNA copy number, accompanied by binding of mitochondrial protein extract to the mitochondrial transcription factor A DNA-binding site. Hence, mtDNA integrity and transcriptional capacity after LPS administration appeared to be reinstated by mitochondrial biogenesis. These data provide the first link between LPS-mediated hepatic injury and a specific oxidative mtDNA deletion, which inhibits mitochondrial transcription and is restored by activation of mechanisms that lead to biogenesis.

PMID: 12480607 [PubMed - indexed for MEDLINE]


Click here to view this article on PubMed

Lipopolysaccharide stimulates mitochondrial biogenesis via activation of nuclear respiratory factor-1.

Suliman HB, Carraway MS, Welty-Wolf KE, Whorton AR, Piantadosi CA.

Departments of Medicine, Anesthesiology, and Pharmacology, Duke University Medical Center, Durham, North Carolina 27710, USA.

Exposure to bacterial lipopolysaccharide (LPS) in vivo damages mitochondrial DNA (mtDNA) and interferes with mitochondrial transcription and oxidative phosphorylation (OXPHOS). Because this damage accompanies oxidative stress and is reversible, we postulated that LPS stimulates mtDNA replication and mitochondrial biogenesis via expression of factors responsive to reactive oxygen species, i.e. nuclear respiratory factor-1 (NRF-1) and mitochondrial transcription factor-A. In testing this hypothesis in rat liver, we found that LPS induces NRF-1 protein expression and activity accompanied by mRNA expression for mitochondrial transcription factor-A, mtDNA polymerase gamma, NRF-2, and single-stranded DNA-binding protein. These events restored the loss in mtDNA copy number and OXPHOS gene expression caused by LPS and increased hepatocyte mitotic index, nuclear cyclin D1 translocation, and phosphorylation of pro-survival kinase, Akt. Thus, NRF-1 was implicated in oxidant-mediated mitochondrial biogenesis to provide OXPHOS for proliferation. This implication was tested in novel mtDNA-deficient cells generated from rat hepatoma cells that overexpress NRF-1. Depletion of mtDNA (rhoo clones) diminished oxidant production and caused loss of NRF-1 expression and growth delay. NRF-1 expression and growth were restored by exogenous oxidant exposure indicating that oxidative stress stimulates biogenesis in part via NRF-1 activation and corresponding to recovery events after LPS-induced liver damage.

PMID: 12902348 [PubMed - indexed for MEDLINE]


Click here to view this article on PubMed

1: Physiol Genomics. 2008 Mar 14;33(1):121-32. Epub 2008 Jan 29.

Genome-wide identification and characterization of transcripts translationally regulated by bacterial lipopolysaccharide in macrophage-like J77 4.1 cells.

Kitamura H, Ito M, Yuasa T, Kikuguchi C, Hijikata A, Takayama M, Kimura Y, Yokoyama R, Kaji T, Ohara O.

Laboratories for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan. ktmr@rcai.riken.jp

Although Escherichia coli LPS is known to elicit various proinflammatory responses in macrophages, its effect on the translational states of transcripts has not yet been explored on a genome-wide scale. To address this, we investigated the mRNA profiles in polysomal and free messenger ribonucleoprotein particle (mRNP) fractions of mouse macrophage-like J774.1 cells, using Affymetrix Mouse Genome 430 2.0 GeneChips. Comparison of the mRNA profiles in total cellular, polysomal, and free mRNP fractions enabled us to identify transcripts that were modulated at the translational level by LPS: among 19,791 transcripts, 115 and 418 were up- and downregulated at 1, 2, or 4 h after LPS stimulation (100 ng/ml) in a translation-dependent manner. Interestingly, gene ontology-based analysis suggested that translation-dependent downregulated genes frequently include those encoding proteins in the mitochondrial respiratory chain. In fact, the mRNA levels of some transcripts for complexes I, IV, and V in the mitochondrial respiratory chain were translationally downregulated, eventually contributing to the decline of their protein levels. Moreover, the amount of metabolically labeled cytochrome oxidase subunit Va in complex IV was decreased without any change of its mRNA level in total cellular fraction after LPS stimulation. Consistently, the total amounts and activities of complexes I and IV were attenuated by LPS stimulation, and the attenuation was independent of nitric oxide. These results demonstrated that translational suppression may play a critical role in the LPS-mediated attenuation of mitochondrial oxidative phosphorylation in a nitric oxide-independent manner in J774.1 cells.

PMID: 18230670 [PubMed - indexed for MEDLINE]


Hyperlactacidemia hyperlactacidemia and increased ratios of lactate/pyruvate.

Click here to view this article on PubMed

1: Biol Neonate. 2003;84(4):319-24.
LPS-induced changes in myocardial markers in neonatal rats. Ravindranath TM, Goto M, Bakr S, Ramasamy R.

The Ronald McDonald Children's Hospital, Loyola University Medical Center, Maywood, IL 60153, USA. travind@lumc.edu

Lipopolysaccharide (LPS) produces varied systemic metabolic effects. We studied the effects of LPS on the cardiac fatty acid profile and its relationship to energy metabolism and inflammatory mediators that included TNF-alpha and nitric oxide synthase (NOS) in 10-day-old neonatal rat pups. Rat pups received an i.p. injection of LPS after a 4-hour starvation period, followed by collection of blood and cardiac tissue 4 h following LPS administration. Compared to controls, LPS induced significant hypoglycemia and hyperlactacidemia, suggesting the development of endotoxic shock. The result was a significant depression in total fatty acid levels as well as non-esterified fatty acid in the cardiac tissue of the LPS-treated pups. In addition, LPS-treated pups also showed a significant increase in TNF-alpha, NOS levels with a depressed redox state and energy metabolism in cardiac tissue. These observations suggest that endotoxic shock in 10-day-old rat pups induces a systemic inflammatory response with a depression in fatty acid metabolism that may contribute to myocardial failure. Copyright 2003 S. Karger AG, Basel

PMID: 14593243 [PubMed - indexed for MEDLINE]